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Abstract

In this article we first present a mathematical model which describes the nonlinear dynamics of tensegrity structures.
For certain tensegrity structures a particular class of motions, coined symmetrical motions, is defined. The corre-
sponding equations of motion are derived and the conditions under which symmetrical motions occur are established.
Reconfiguration procedures through symmetrical motions are proposed and examples are given. © 2002 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

Tensegrity structures represent a special class of space structures composed of a set of soft mem-
bers—which can carry only tension forces (e.g. tendons)—and a set of hard ones (for example bars). These
structures are characterized by prestressability, which is the property to maintain an equilibrium shape with
all soft members in tension and in the absence of external forces or torques. These structures integrity is
guaranteed by the soft members in tension, hence their denomination, tensegrity, an acronym of tension
integrity. Tensegrity structures are capable of large displacement, belonging to the class of flexible struc-
tures. They offer excellent opportunities for physically integrated structure and controller design, since the
elastic as well as the rigid components can carry both sensing and actuating functions. A perspective view of
a tensegrity structure composed of 24 tendons and six bars is given in Fig. 1.

The origins of tensegrity structures go back to 1921 (see Sadao, 1996). Inspired by Kenneth Snelson
sculptures created in 1948 (see Snelson, 1996), Buckminster Fuller patented a class of tendon-bars struc-
tures which he called tensegrity structures. Later work by engineers and scientists (Calladine, 1978, 1982;
Connelly, 1980; Pellegrino and Calladine, 1986; Calladine and Pellegrino, 1991; Motro, 1992; Ingber, 1993;
Connelly and Whiteley, 1996; Skelton and Sultan, 1997; Sultan et al., 2000) generalized the term tensegrity
structures.
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Nomenclature

b length of the base and top triangles sides

131,2,3 inertial reference frame unit vectors

d common value of the coefficients of friction at all joints
d; the coefficient of friction at joint j

k; stiffness of the jth tendon

ksvp stiffness of the saddle (S), vertical (V), diagonal (D) tendons respectively
/ length of a bar

l; length of the jth tendon

Ly, rest length of the jth tendon

m mass of a bar

vector of generalized coordinates

velocity of the nth rigid body mass center

time

top reference frame unit vectors

length of a diagonal tendon in a symmetrical configuration
rest length of a diagonal tendon

number of tendons

vector of external forces

external force acting on the #; axis

resultant nonconservative force applied to rigid body n
transversal moment of inertia of a bar

kinetic energy

the Lagrangian

elongation of the jth tendon

inertia matrix

mass of the top

external torque acting on the # axis

resultant nonconservative torque applied to rigid body n
M; friction torque at joint j

N number of degrees of freedom

(0] vector of nonconservative generalized forces
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N

number of rigid bodies

length of a saddle tendon in a symmetrical configuration
So rest length of a saddle tendon
Vo rest length of a vertical tendon
X, Y, Z Cartesian inertial coordinates of the mass center of the top
T(q)  vector of tensions in the tendons
T; tension in the jth tendon
Tp tension in a diagonal tendon in a symmetrical configuration
Ts tension in a saddle tendon in a symmetrical configuration
Ty tension in a vertical tendon in a symmetrical configuration
U potential energy
14 length of a vertical tendon in a symmetrical configuration
Z; initial height
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Z; final height

o azimuth of bar 4B, in a symmetrical configuration
o initial azimuth

o final azimuth

o7 azimuth of bar 4;,B;;

0 declination of a bar in a symmetrical configuration
o initial declination

Or final declination

0y declination of bar 4;;B;;

¥, ¢, 0 Euler angles of the top reference frame
T reconfiguration time

" angular velocity of the nth rigid body

Tendon

Fig. 1. A tensegrity structure.

Fuller (1975) and Pugh (1976) pioneered tensegrity structures research, but their work was confined to
geometrical investigations. Structural mechanics was later involved as the theoretical framework for the
analysis and design of these structures and research in tensegrity structures turned into a systematic one.
Calladine (1978, 1982), Motro et al. (1986), Hanaor (1988), Pellegrino (1990) made important contributions
toward further knowledge of the statics of these structures. Kebiche et al. (1999) presented interesting
results of numerical nonlinear static analysis of tensegrity structures. Sultan et al. (2001) formulated the
complete prestressability problem—which consists in finding equilibrium configurations with all tensile
elements in tension when no external forces or torque act on the structure—and reported the discovery of
analytical solutions of this problem for several classes of tensegrity structures.
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Research in tensegrity structures dynamics is less developed than its statics counterpart. Previous in-
vestigations were limited to numerical and experimental analysis of particular tensegrity configurations.
Motro et al. (1986) presented experimental results of linear dynamics for a tensegrity structure composed of
three bars and nine tendons. The experiment was aimed at determining the dynamic characteristics of the
structure by harmonic excitation of a node and measurement of the responses of the other nodes. Furuya
(1992) used finite element programs to analyze the vibrational characteristics of some tensegrity structures
and concluded that the modal frequencies increase as the pretension increases. Oppenheim and Williams
(2001a) proved that, for a tensegrity structure composed of three bars and six tendons and with linear
kinetic damping in the tendons, the rate of decay of vibrations is much slower than might be expected.
However when linear kinetic friction of the angular motion between structural members in contact was
introduced, an exponential rate of decay was obtained. In another article by Oppenheim and Williams
(2001b) these remarks were reinforced, leading to the conclusion that friction in the rotational joints of the
structure is a more important source of damping than the material damping in the tendons. Murakami
(2001) used the Lagrangian and Eulerian approaches to the equations of motion derivation for a large class
of structures and applied them to some tensegrity structures for numerical simulation and modal analysis.

Active control design studies for tensegrity structures have been reported by Skelton and Sultan (1997),
Sultan and Skelton (1997, 1998a, 1998b), Sultan (1999), Sultan et al. (1999, 2000), and Djouadi et al. (1998).
These articles showed that tensegrity structures are excellent candidates for smart structures since the
control systems can be easily embedded in the structures; for example some of the tendons can act as
actuators and some as sensors, providing the basic components of a control system.

Tensegrity structures also aroused the interest of the bio-medical community: they have been proposed
to explain how various types of cells (e.g. nerve cells, smooth muscles, etc.) resist shape distortion (Ingber,
1993, 1998). Results of static numerical analysis using a tensegrity structure to model a cell’s static prop-
erties which were in agreement with biological experimental measurements have been reported (see
Stamenovic et al., 1996; Coughlin and Stamenovic, 1997).

In this article we first present the nonlinear equations of motion for certain tensegrity structures. Next,
for particular tensegrity structures, a class of motions, coined symmetrical motions, is defined and the
conditions under which these motions exist, as well as the corresponding equations of motion, are estab-
lished. These symmetrical motions are then used in tackling the important problem of reconfiguration in
tensegrity structures. Tendon control reconfiguration procedures through symmetrical motions are pro-
posed. The reconfiguration takes place in a finite, prescribed, time. Examples of these reconfiguration
procedures are given.

2. Nonlinear equations of motion

An important advantage of flexible tensegrity structures over classical flexible structures is that their
dynamics can be described accurately enough by ordinary differential equations rather than partial differ-
ential equations. This is so because tensegrity structures flexibility is achieved through special design
techniques which combine elements that can be considered, to a good approximation, massless elastic
members (e.g. tendons) or rigid bodies. Under very general modeling assumptions this results, as we shall
see in the following, in mathematical models composed of finite sets of ordinary differential equations.

As is well known, ordinary differential equations are much easier to deal with numerically as well as
analytically. Moreover, modern control system design theory heavily relies on state space representation of
the system’s dynamics. Ordinary differential equations are readily put in state space form (see Skelton,
1988), whereas for partial differential equations the situation is different; the separation of variables method
is applied in some cases to get an infinite set of ordinary differential equations and a set of partial differ-
ential equations with boundary values. Usually, for control design, only a finite set of ordinary differential



C. Sultan et al. | International Journal of Solids and Structures 39 (2002) 2215-2234 2219

equations is retained. Thus, qualitative as well as quantitative alteration of the original mathematical model
is performed through this process.

Next we derive a mathematical model of tensegrity structures dynamics which consists of ordinary
differential equations.

Consider a tensegrity structure composed of E elastic and massless tendons and R rigid bodies. We
assume that all constraints on the system are holonomic, scleronomic, and bilateral. The external constraint
forces are workless, which means that they do no work through a virtual displacement consistent with the
geometric constraints. We neglect the forces exerted on the structure by other force fields (for example the
gravitational field).

Letg;,j=1,...,N, be a set of independent (also called Lagrange) generalized coordinates which describe
the motion of the system with respect to an inertial reference frame and let

9=l q ... CIN]T (1)

be the vector of generalized coordinates. The application of the Lagrangian methodology to derive the
nonlinear equations of motion requires the derivation of the kinetic and potential energies and of the
nonconservative generalized forces.

Since the tendons are massless the kinetic energy is given by the rigid bodies and it is a quadratic form of
the generalized velocities:

K =3 M(g) @

where M(q) is the inertia matrix.
The potential energy is due to the E tendons, being given by

E L;
U= Z/O T,dl;. (3)
Jj=1

Here L; is the elongation of the jth tendon, 7} is its tension (considered positive if the tendon is in tension
and zero otherwise), and the differential element d/; is given by

Mo
n=1 aq”

dl; = dd, )

where /; is the length of the jth tendon. The potential energy becomes

. dgq,. (5)

" E L,-TN ol
;/o j,;aqn

We assume that the system is also acted upon by nonconservative forces and torques. The corresponding
nonconservative generalized forces can be expressed as shown by Skelton (1988):

Ro(., o L 0
P = F'-—+M"- i=1,...,N.
Q.I Z( aq/+ aq/ ) ] ’ aN (6)

n=1

Here Q; is the nonconservative generalized force associated with the jth generalized coordinate, F" and M"
are the resultant nonconservative force and torque, respectively, applied to rigid body n, 7' and @" are the
velocity of the center of mass and the angular velocity of the nth rigid body, respectively.

For a holonomic system whose configuration is described by N independent generalized coordinates ¢;,
j=1,...,N, Lagrange equations are
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d (oL oL
“(=|-==0, j=1,...,N 7
dt(aqj> 661] Q/7 J ’ IEAR ()

where ¢ is the time and L = K — U is the Lagrangian of the system.
Applied to a tensegrity structure, Lagrange equations yield

M(q)g +c(q,9) +A4(q)T(q) = O, (8)

where

* ¢(q,q) is a vector of quadratic functions in ¢, whose components can be expressed as

Y foM; 1M,
o v - n T - 1 o .
@=2 > ( 50, 2 oa, )q_,qm i=1,...,N; 9)

j=1 n=1

e A(q)T(q) is the vector of elastic generalized forces where 4(n, j] = 01;/3q,,n=1,...,N,j=1,...,E, and
T(g) is the vector of tensions in the tendons;
e 0=1[01 0 - QN]T is the vector of nonconservative generalized forces.

Egs. (8), which describes tensegrity structures nonlinear dynamics, represent a finite set of second order
ordinary differential equations.

A particular case of interest is when the nonconservative forces and torques acting on the structure can
be separated in the following two types. The first type is that of linear kinetic friction forces and torques at
the joints of the structure and linear kinetic damping forces in the tendons (a linear kinetic friction force/
torque is proportional to the relative linear/angular velocity between the members in contact, whereas a
linear kinetic damping force is proportional to the time derivative of the tendon’s elongation), and the
second type is that of external-—not friction or damping—forces and torques applied to the rigid bodies.
Using Eqgs. (6) it is easy to see that in this case the generalized forces are linear in the generalized velocities
and in the external forces and torques, leading to the following equations of motion:

M(q)g +c(q,q) +A(q9)T(q) + C(q)g + H(q)F =0, (10)

where C(q) and H(q) are matrices of appropriate dimensions whereas F is the vector of external forces and
torques.

3. Two stage SVD tensegrity structures

In the following we shall focus on a certain class of structures, coined two stage SVD tensegrity
structures. These structures present clear practical interest for industrial applications. They have been
previously investigated for control design (Skelton and Sultan, 1997), integrated structure and control
system design (Sultan and Skelton, 1997), sensors design (Sultan and Skelton, 1998a), deployment (Sultan
and Skelton, 1998b), and prestressability (Sultan et al., 2001).

A two stage SVD tensegrity structure is composed of six bars, a rigid top (BB B3,), a rigid base
(A11A421431), and 18 tendons, as shown in Fig. 2. A stage contains bars with the same second index; for
example bars 4,1By1, 421B,1, A3 B3 determine the first stage. The acronym “SVD” comes from the fol-
lowing notation we introduce for the tendons: tendons B;.4, will be called saddle tendons, 4;B; and 4B
vertical tendons, and 4;14,, and B; B;, diagonal tendons respectively.
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Fig. 2. Two stage SVD tensegrity structure.

The assumptions made for the mathematical modeling of two stage SVD tensegrity structures are: the
tendons are massless, not-damped (not affected by damping), and linear elastic, the tension in tendon j being
given by
l; — lOf

I,

T/':kj ’ (11)

where k; is the stiffness of the jth tendon (defined here as the product between the cross-section and the
longitudinal modulus of elasticity of the tendon), /; is its length, and /q, is its rest-length. We also assume
that the base and the top are rigid bodies, the bars are rigid, axially symmetric, and for each bar the ro-
tational degree of freedom around the longitudinal axis of symmetry is neglected. We assume that an
external force and an external torque act on the rigid top. Also friction torques, proportional to the relative
angular velocity, act at the six joints between the base or the rigid top with the bars, being given by

Mf,:d,-(aﬁ—ab), j=1,....6, (12)
where Mf/. is the friction torque at joint j, exerted by body “b” on body “a’, due to the relative angular
motion between bodies “a”” and “b”. The scalar d; <0 is the coefficient of friction at joint j, whereas &* is
the angular velocity of body *. We neglect the forces exerted on the structure by external force fields (e.g.
gravitational). We remark that these assumptions are particular cases of the modeling assumptions made
for the derivation of the general equations of motion of tensegrity structures. The equations of motion of
two stage SVD tensegrity structures have the form given by Egs. (10).

We consider that the base is fixed and we introduce the inertial reference frame, 131, 132, 133, as an or-
thonormal dextral set of vectors, whose origin coincides with the geometric center of triangle 4,145 453;.
Axis b is orthogonal to 44,143, pointing upward, while by is parallel to 41,43, pointing toward 45;. We
introduce another orthonormal dextral reference frame, f,, ,, #3, called the top reference frame. Its origin is
located at the geometric center of triangle BB B, O,, axis f; is orthogonal to B,B,B3, pointing upward,
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while 7, is parallel to B},B3,, pointing toward Bs,. For simplicity it is assumed that the top reference frame is
central principal for the top rigid body.

The 18 independent generalized coordinates used to describe the motion of this holonomic system, are: y,
¢, 0, the Euler angles for a 3-1-2 sequence to characterize the inertial orientation of the top reference frame,
X, Y, Z, the inertial Cartesian coordinates of the origin of the top reference frame, J;; and «;, the decli-
nation and the azimuth of the longitudinal axis of symmetry of bar 4,;B;;, measured with respect to the

SUTCE .
inertial reference frame and defined as follows: d;; is the angle made by the vector 4;,B;; with b; and «;; is the
angle made by the projection of this vector onto plane (b, by) with b, (see Fig. 2). Hence, the vector of
generalized coordinates is

q = [511 oy Og1 01 031 03p Opp 0y 02 G O am Yy G O X Y Z]T~ (13)
The nonlinear equations of motion are given by Egs. (10):

M(q)q +c(q,q) +A4(q)T(q) + C(q)g + H(q)F = 0. (14)

Matrices M(q), A(q), C(q), H(gq) have been derived by Sultan (1999). Here F is the vector of external forces
and torques acting on the rigid top, given by

F=[M MM FFFE, (15)

where M; and F;, i = 1-3, are the force and torque, respectively, acting on the rigid top along axis .

4. Symmetrical motions

We shall now investigate the conditions under which particular motions, described by simpler equations,
are possible. We first assume that the two stage SVD tensegrity structure under investigation has the fol-
lowing properties.

e All bars are identical, of length / and mass m, and the top and base triangles are equal equilateral trian-
gles with sides of length b.

e All saddle tendons are identical (of rest length Sy and stiffness kg); all vertical tendons are identical (of
rest length 7, and stiffness ky); all diagonal tendons are identical (of rest length D, and stiffness 4p).

e The coefficients of friction at the six joints—between the base or the rigid top with the bars—are equal,
d=d,j=1,...,6.

We introduce a particular class of configurations called symmetrical configurations and defined as fol-
lows: all bars have the same declination, ¢, the vertical projections of points 4;,, B;;, i = 1-3, onto the base
make a regular hexagon, planes 4;,4,43; and 4,4 A3, are parallel. These configurations can be pa-
rameterized by three numbers: the azimuth of bar 4B, called «, the declination, J, and the height of the
structure, Z. The generalized coordinates corresponding to a symmetrical configuration are given by the
following expressions:

tp:300, d):@:(), X:YZO, Z:Z, o = A, 0621:O(+2407
o3 = o0+ 120, A2 :O(<|>1207 Oy = A, A3 :O(<|>2407 5[]25, i= 1*3, j: 1,2 (16)
From physical considerations we impose the following restrictions. First « € {[0,360) — 30} since for o = 30

some bars—for example A4,,B, 45 B>, A31B3;—intersect. Second 0 < ¢ < 90 because for § = 90 the bars
collide with the base or top and for 6 = 0 they are perpendicular to the base and top, a situation we do not
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Top View

Fig. 3. Symmetrical configuration.

consider here. Lastly the height, Z, should be large enough such that the ends of the bars of the second stage
labeled 4,5, i = 1-3, do not collide with the base, hence Z > / cos(d) (because for Z = / cos(d) impact occurs).
Top and frontal views of a two stage SVD tensegrity structure with this geometry are given in Fig. 3.
In a symmetrical configuration, the lengths of all of the saddle (S), all of the vertical (), and all of the
diagonal (D) tendons are the same, given by
2

) 12
S = {Zz + 1> + 31% cos*(6) — 41Z cos(d) + % - %lb sin(8) cos (o — 30)} , (17)

V = {I* +b* — 2Ibsin(d) sin(x + 30)}"/%, (18)
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) 1/2
D= {12 4—%4—22 — 21Z cos(9) —%lbsin(é) sin(oc)} , (19)
respectively (see Sultan et al., 2001, for details on the derivation of S, V/, D). The corresponding tensions are
all equal; let their values be Ts, Ty, Tp respectively.

The particular class of motions we are interested in and which we shall call symmetrical motions, is
characterized by the fact that throughout the motion the structure yields symmetrical configurations. The
corresponding generalized coordinates have the values given by Eqgs. (16).

Substitution of Egs. (16) into the general equations of motion, Egs. (14), leads to the following equations
(see Sultan, 1999, for details):

F=FB=M=M=0, (20)
E(Zsin(a)) =0 (21)
de -

4 3J sin’(d)a + émlbg (sin(d) cos(a + 60)) | = Ms, (22)
dr 2 dt

Jé—dé+ AT, =0, (23)
J sin? ()6 — dé 4 J sin(20)ad 4+ AL T, = 0, (24)
msin(0)d + MZ + mcos(8)6” + AT, = F, (25)

where
- 2 3ml -
J:J—i—mT, m:%, M = M, + 3m. (26)

Here Al, A7, AT are the rows of the matrix 4, given in Appendix A, M, is the mass of the rigid top, J is the
transversal moment of inertia of a bar, and 7, = [Ts Ty TD]T. Additionally, throughout the motion, the
tendons must be in tension, thus

Ts > 0, Ty > 0, Tp > 0. (27)

We note that a necessary condition for symmetrical motions to exist is that the components of the force
and the torque acting on the rigid top, except those along the 73 axis, must be zero (F; = F, = M; = M, = 0).

Another necessary condition for these motions to exist is given by Eq. (21) which says that the com-
ponent of the rigid top velocity onto a plane perpendicular to a bar is constant throughout the motion.
Consider now the case when the initial derivative of Z, let it be called Z, is nonzero, implying Z; sin(d;) #0
(since 0 < 9; < 90). Then, from Eq. (21), we get

P Z;sin(d;)

Sin (o) = |Z| > |Zisin(5;)| (28)

which shows that the height of the structure would either continuously increase or continuously decrease
(ast — 00, Z — —o0 or Z — +00). Because of physical limitations this is possible only for a limited time
(for example until some members of the structure break). If Z = 0 then from Eq. (21) we get Z = constant
(since sin(0) = 0 leads to 6 = 180 n with n an integer number, which is not an acceptable solution because
0 < 6 < 90). Thus during such a symmetrical motion the height of the structure remains constant and the
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configuration of the structure changes only through changes in « and J (the attitude of the bars). Hence, the
only rigid bodies in motion are the bars.

We remark that, in general, symmetrical motions are described by five equations, Egs. (21)—(25), whereas
we have only three independent variables, o, 0, Z. This is a consequence of the fact that we imposed certain
constraints, given by Egs. (16), on the generalized coordinates. Because of this we cannot arbitrarily specify
the initial conditions (namely the values and first order time derivatives of «, J, and Z at the initial time) and
the controls time histories (the external force, F3, torque, M3, and the tendons rest lengths, Sy, ¥, Dy). For
example assume that we specify the initial conditions and the tendons rest-lengths time histories. Then, by
the theorem of the existence and uniqueness solution of the initial conditions problem for ordinary dif-
ferential equations, Egs. (23)—(25) yield a unique solution for «, §, and Z. Thus M; cannot be arbitrarily
specified but has to satisfy Eq. (22). Moreover, this solution might violate condition (21). This discussion
reveals an important problem for these motions, which consists in finding the initial conditions and the
controls which result in symmetrical motions. In this article we shall address the most interesting problem
(from a practical perspective) namely that of equilibrium initial conditions, when all the time derivatives are
zero initially. This results in a very useful application of symmetrical motions called symmetrical recon-
figuration.

4.1. Symmetrical equilibrium configurations

Symmetrical equilibrium configurations are characterized by Egs. (20)—(25) in which all time derivatives
are zero, thus

F=FKE=M =M,=M;=0, (29)
and
A4T,=00FR]", Ts>0, Ty>0 Tp>0. (30)

If /5 =0 then the corresponding symmetrical equilibrium configurations are actually symmetrical pres-
tressable configurations for which all saddle, vertical, and diagonal tendons tensions are respectively equal
(see Sultan et al., 2001, for analytical solutions of conditions (30) in this case).

If F5 # 0 then we can easily prove that, because a, ¢, and Z must satisfy a € {[0,360) — 30}, 0 < J < 90,
and Z > Icos(d), there are no solutions of 4,7, = [0 0 £]" for which det(4,) = 0. Indeed, such a solution
occurs if the first two rows of A4, are linearly dependent, a condition which, after simple algebraic ma-
nipulations, leads to Z = / cos(d) which contradicts the condition Z > I cos(d) (for Z = I cos(d) the ends of
the second stage bars labeled 4,5, i = 1-3, collide with the base and the ends of the first stage labeled B,
i = 1-3, collide with the top).

Hence 4, is nonsingular at a solution for which F; # 0 and 4,7, = [0 0 Fg}T can be easily solved for the
tensions yielding

T,=47'00F)". (31)

5. Symmetrical reconfiguration

Consider now the following scenario: the structure is in a symmetrical equilibrium configuration char-
acterized by a;, d;, and Z;. We want to change this initial configuration to another symmetrical equilibrium
configuration, characterized by a, d;, and Z; through a symmetrical motion. Because the structure is in
equilibrium initially, the symmetrical motion can take place only at constant height, thus Z, = Zy = Z. We
call this process symmetrical reconfiguration. It can be used for packing the structure for transport or for
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modifying its mechanical properties (e.g. stiffness or dynamical characteristics) by changing its geometry.
For example we can imagine an application in which a two stage SVD tensegrity structure is required to
support a constant vertical load at a given height. Operating conditions require modification of the me-
chanical characteristics or of the internal geometry (bars attitude) of the structure without unloading it or
changing its height. This can be done through a symmetrical reconfiguration.

If « and o are prescribed as functions of time then we can solve for the necessary controls required to
enforce a symmetrical reconfiguration, using Egs. (22)-(25). For example we consider that the external
force F; (which in this scenario is the load under which the structure operates) is given. Under the as-
sumption that 4, = [4; 4, Ag]T (which is a function of o and J) is nonsingular we get

T,=—4"e, (32)
M; = 4 3J sin’(d)a + igmlbi (sin(d) cos(a + 60)) |, (33)
dt 2 dr
where
i Jo—dd '
e = |Jsin?(8)d — da + J sin(20)ad | - (34)

msin(8)8 + mcos(8)6” — F

In addition the tensions should be positive: Ts > 0, Ty > 0, Tp > 0. We can see that, in this scenario, tendon
control (that is control of the tendons tensions, 7,) and external torque control (M3 # 0) are required.

Tendon control requires modification of the active lengths of the tendons. This task can be accomplished
by motors attached, for example, at the end of the bars (or, if the bars are hollow, inside them). We consider
that these motors work in the following way. For example the motor pulls a tendon and rolls it over a small
wheel in such a way that its active length is shortened: the part of the tendon which is rolled over the motor
wheel no longer contributes to the tendon tension. Hence this control procedure works as if the rest-length
of the tendon would be shortened. Similarly, when the motor reverses the sense of rotation, a portion of the
inactive tendon becomes active, carrying force; hence the rest-length of the tendon increases. We call this
procedure of tendon control, rest-length control.

Taking into account the relations between the rest-lengths and the tensions under the assumption that
the tendons are linear elastic, we can solve for the necessary rest-lengths which enforce the motion:

_ ksS v vV koD
 Ts+ ks’ O_Tv-l-kv7 O_TD‘FkD,

0 (35)
where Ts = 71,1, Tv = T, Tp = 1,5 and S, V, D are given by Egs. (17)—(19).

We shall further determine the necessary characteristics of o and J as functions of time connecting the
initial and final configurations, (o, d;, Z;) and («s, o¢, Zr) (Where Z; = Z¢), respectively. In the following we
shall refer to these functions as «(¢) and d(¢) respectively.

e First, we want the transition between the two symmetrical equilibrium configurations to take place in a
prescribed finite time, 7.

e Second, since the terminal points are equilibrium configurations, « and é must be constant before and
after the transition, which is assumed to take place for ¢ € [0,1]. Thus:

5 if 1<0 C[& if <0
“”—{wihzz’ MO_{&iH>L (36)
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e Third, practical considerations force us to consider only continuous time controls. Consequently the vec-
tor of tendons tensions, 7,, must be continuous in time. Hence, e(t) = 4,7, must be continuous in time,
and thus «(¢) and §(¢) must be functions of (at least) class C*(R). Thus, &, &, , and  should have zero
values at the terminal points of the transition:

4(0) = &(0) = 6(0) = 6(0) = a(z) = &i(x) = d(x) = () = 0. (37)

The simplest piecewise polynomials which satisfy the above conditions are:

o if <0
a(t) = o fO0<t<rt, (38)
olf ift>1
where
5 3 ,
o = o+ — (o a,)(30—g(t r)—i—;(r—r)), (39)
0 if <0
ot)y=19o, fO0<t<r, (40)
o ift>=1
where
30 £ £ )

The set of functions which satisfy the above conditions is very rich and other examples can be easily
constructed. For example we can multiply o, and/or 8, by (1 + 2(¢ — t)*)" where 1 is a natural number, or
by any other function g(¢) of class C?([0, ]) such that g(0) = g(t) = 1 and g(0) = g(0) = g(z) = g(z) =0
and the resulting «(¢) and/or o(¢) will satisfy the required conditions.

Lastly, the condition that A4, is nonsingular deserves some discussion. The corresponding condition, det
(4,) # 0, reduces to

Z2u — Z(3lu + %) cos(d) + <3lu + ?b) Icos*(8) # 0, (42)

where u = sin(0) cos(a + 30) (see Sultan et al., 2001, for details). The functions «(¢) and 6(¢) must satisfy
this condition. Once «(¢) and J(¢) have been chosen one easy way to verify if condition (42) is satisfied is
through discretization by gridding the time interval [0, 7] and checking condition (42) at the nodes of the
grid. We also remark that condition (42), being linear in cos(x + 30), can be easily solved for o, providing
another simple way to check if det(4,) # 0.

5.1. Example

Consider a two stage tensegrity structure characterized by the following parameters:
I=1m, b=0.67m, J=1kgm?> m=1kg M=1kg d=-1I,
ks = kv = kp = 1000 N. (43)

The structure is acted upon by a constant force /3 = —50 N. The corresponding equilibrium symmetrical
configurations are characterized by conditions (30).
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Solutions of conditions (30) can be found as follows. First we choose «, d, and Z such that det(4,) # 0
(that is o, J, and Z verify condition (42) and o € {[0,360) — 30}, 0 < J <90, Z > Icos(d)) and we com-
pute the tensions using Eq. (31). If these are positive, then a feasible solution of the problem has been
found, otherwise we have to modify a, J, or Z.

We next consider the following two feasible solutions:

o; = 55°, 0; = 40°, Z; =1.11 m, T, =[26.11 1.85 18.38]T N, (44)
and
op = 65°, of = 35°, Zy =7 =1.11 m, T, = [46.97 12.27 43]T N. (45)

The structure can evolve through a symmetrical motion from the initial configuration, characterized by
(o4, 0i, Zi), to the final configuration, characterized by (ar, dr,Zr). For example, for t =5 s, the corre-
sponding a(¢) and 6(¢) given by Egs. (38)—(41), are plotted in Fig. 4. The necessary rest-lengths which

65 T T
H
S60F
3
55 1 L L . . .
0 05 1 15 2 25 3 35 4 45 5
Time (s)
40
39+ q
538 1
g
2
371 4
36 1
35 L L L L . . h
0 05 1 15 2 25 3 35 4 45 5

Time (s)

Fig. 4. o and J time histories for symmetrical reconfiguration.
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Fig. 5. Rest-lengths time histories for symmetrical reconfiguration.
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Fig. 7. Control torque time history for symmetrical reconfiguration.

guarantee this trajectory are given by Egs. (35) and are plotted in Fig. 5. The corresponding tensions time
histories, given by Eq. (32) and plotted in Fig. 6, show that throughout the motion all tendons are in
tension. The external torque time history, M;, given by Eq. (33) and plotted in Fig. 7, shows that a control
torque is required to perform this symmetrical reconfiguration.

6. Symmetrical reconfiguration with zero control torque

A natural question we ask is if symmetrical reconfigurations in which external torque is not necessary
(that is M; = 0), are possible. In order to answer this question we consider Eq. (22) which, for M; =0,
reduces to
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+ — —(sin(d) cos(a + 60)) = C 46
5 g (Sn(0) cos(e + 60)) = €. (46)

where C) is a constant. Since the structure is in equilibrium initially, & = 8 =27 =0, thus C; = 0, and

Eq. (46) can be integrated after multiplication with the integrable factor

1

3J sin®(d)a

= . 47
g sin*(3) cos?(a + 60) #7)
After several algebraic manipulations we obtain from Eq. (46)
_ . . nb , . .
3J sin(a — o;) sin(J) sin(d;) + = (sin(0) cos(o 4 60) — sin(d;) cos(os + 60)) = 0. (48)

V3

Hence the structure can be symmetrically reconfigured such that M3 = 0 if the successive symmetrical
configurations the structure passes through during the motion satisfy Eq. (48). Because of this constraint,
a(t) and 6(¢) cannot be arbitrarily specified: if one function is specified, then the other is given by Eq. (48).
The relations between the time derivatives of «(¢) and J(¢) can be determined by implicit differentiation of
Eq. (48). By writing Eq. (48) as f(«, 0) = 0 where

f(2,8) = 3J sin(o — o) sin(6) sin(J;) + ;\n/_g (sin(0) cos(o 4 60) — sin(d;) cos(o + 60)), (49)
and differentiating f(a,d) = 0 with respect to time we get:

130+ f,4=0, (50)

30 + [+ [ + 23580 + f336” = 0. (s1)

Here f,, f5, are the first order derivatives of f(«, d) with respect to o and d and f,s, f.,, f55 are the second
order derivatives of f(o,d) with respect to o and 9.

For example consider that we specify the function «(¢). Then the corresponding d(¢), which guarantees
that M; = 0, is determined by solving Eq. (48) for 6(¢). Of course there is no guarantee that the corre-
sponding d(¢) would be of the same class as «(¢). However, the implicit function theorem guarantees that if
f5 # 0 this is locally true.

6.1. Example

As an example of a symmetrical reconfiguration with zero external torque we consider the
same tensegrity structure as before. Consider that a constant force F3 = 50 N acts on the rigid top and
that the initial symmetrical equilibrium configuration, at which all tendons are in tension, is characterized
by

% =70°, & =30° Z=16m, T,=][0.498918.79 N. (52)

We want to change this configuration to another symmetrical equilibrium configuration characterized by
or = 65° through a symmetrical reconfiguration with zero external torque. In this case o; and Jf must obey
Eq. (48) in which « is replaced by o and ¢ is replaced by J;. Solving the resulting equation for o; we get
of = 22.03°. At this point we have to check if in the final configuration characterized by

o =65°, 6 =2203, Z=Z=16m (53)

all tendons are in tension. For this purpose we compute the tensions using Eq. (31) and ascertain that
T, =[3.58 4.93 11.29]T N, showing that, indeed, all tendons are in tension.
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Fig. 8. o and § time histories for symmetrical reconfiguration with zero control torque.
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We shall consider that «(¢) is given by Eqgs. (38) and (39) and the corresponding 6(¢), which guarantees
that M3 = 0, is determined from Eq. (48) (see Fig. 8). The control rest-lengths and tensions required to
assure the symmetrical reconfiguration with zero external torque are given in Figs. 9 and 10. We remark

that the tendons are always in

tension throughout the motion.

Finally we compare this reconfiguration, in which no control torque is required, with the symmetrical
reconfiguration in which d(¢) is no longer given by the condition that M; = 0 but it is given by Egs. (40) and
(41). The initial and final configurations are the same as before. Fig. 11 shows the control torque, M3, which
has to be applied to the rigid top. We can see that, though of small magnitude, a control torque is necessary

in this case.

o
J

Rest-lenghts (m)

Fig. 9. Rest-lengths time histories for symmetrical reconfiguration with zero control torque.
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Fig. 11. Control torque time history for symmetrical reconfiguration with o and ¢ specified.

7. Conclusions

Under very general modeling assumptions the nonlinear equations of motion for tensegrity structures
can be derived using Lagrange methodology. This yields a finite set of second order ordinary differential
equations. For particular motions of some tensegrity structures, coined symmetrical motions, these
equations reduce to a small set. Symmetrical motions can be used for symmetrical reconfigurations of
tensegrity structures. An interesting situation in which symmetrical reconfigurations are very useful is when
the structure is required to maintain a constant height under a given external force. Tendon control and
torque control might be both necessary for this purpose. Through the reconfiguration process the shape as
well as the mechanical properties of a tensegrity structure can be modified. The condition under which no
control torque is required for symmetrical reconfigurations is derived in the form of an algebraic equation.
Numerical examples presented in the article confirm the feasibility of symmetrical reconfigurations.



C. Sultan et al. | International Journal of Solids and Structures 39 (2002) 2215-2234 2233

Appendix A

Matrix 4, is a 3 x 3 matrix whose elements are given by:

_ V3(2Z - 31c(0))1s(3) — 1be(8)c(o — 30)
A, = /s , (A1)

Arlz = 7lb0(5)5(++30)7 (A2)

_ V31Z5(6) — Ibe(6)s(%)

Arl} \/§D ’ (A3)
_ Ibs(8)s(o — 30)
Aoy == (A4)
4, = — 1Bso)elx+30) (A5)
vV
_ 1bs(0)c(x)
Arz3 - \/gD ’ (A6)
4, = 8= 121c00) (A7)
N
Ay =0, (A.8)
4, = 82=61cl0), (A9)
) D

where c(x) = cos(x), s(x) = sin(x).
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