
Symmetrical reconfiguration of tensegrity structures

Cornel Sultan a,*, Martin Corless b, Robert E. Skelton c

a Harvard University, Boston, MA 02115, USA
b School of Aeronautics and Astronautics, Purdue University, West Lafayette, IN 47907, USA

c Department of Mechanical and Aerospace Engineering, University of California, San Diego, CA 92093-0411, USA

Received 14 May 2001; received in revised form 14 December 2001

Abstract

In this article we first present a mathematical model which describes the nonlinear dynamics of tensegrity structures.

For certain tensegrity structures a particular class of motions, coined symmetrical motions, is defined. The corre-

sponding equations of motion are derived and the conditions under which symmetrical motions occur are established.

Reconfiguration procedures through symmetrical motions are proposed and examples are given. � 2002 Elsevier

Science Ltd. All rights reserved.
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1. Introduction

Tensegrity structures represent a special class of space structures composed of a set of soft mem-
bers––which can carry only tension forces (e.g. tendons)––and a set of hard ones (for example bars). These
structures are characterized by prestressability, which is the property to maintain an equilibrium shape with
all soft members in tension and in the absence of external forces or torques. These structures integrity is
guaranteed by the soft members in tension, hence their denomination, tensegrity, an acronym of tension
integrity. Tensegrity structures are capable of large displacement, belonging to the class of flexible struc-
tures. They offer excellent opportunities for physically integrated structure and controller design, since the
elastic as well as the rigid components can carry both sensing and actuating functions. A perspective view of
a tensegrity structure composed of 24 tendons and six bars is given in Fig. 1.

The origins of tensegrity structures go back to 1921 (see Sadao, 1996). Inspired by Kenneth Snelson
sculptures created in 1948 (see Snelson, 1996), Buckminster Fuller patented a class of tendon-bars struc-
tures which he called tensegrity structures. Later work by engineers and scientists (Calladine, 1978, 1982;
Connelly, 1980; Pellegrino and Calladine, 1986; Calladine and Pellegrino, 1991; Motro, 1992; Ingber, 1993;
Connelly and Whiteley, 1996; Skelton and Sultan, 1997; Sultan et al., 2000) generalized the term tensegrity
structures.
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Nomenclature

b length of the base and top triangles sides
b̂b1;2;3 inertial reference frame unit vectors
d common value of the coefficients of friction at all joints
dj the coefficient of friction at joint j
kj stiffness of the jth tendon
kS;V;D stiffness of the saddle (S), vertical (V), diagonal (D) tendons respectively
l length of a bar
lj length of the jth tendon
l0j rest length of the jth tendon
m mass of a bar
q vector of generalized coordinates
_~rr~rrn velocity of the nth rigid body mass center
t time
t̂t1;2;3 top reference frame unit vectors
D length of a diagonal tendon in a symmetrical configuration
D0 rest length of a diagonal tendon
E number of tendons
F vector of external forces
Fi external force acting on the t̂ti axis
~FF n resultant nonconservative force applied to rigid body n
J transversal moment of inertia of a bar
K kinetic energy
L the Lagrangian
Lj elongation of the jth tendon
MðqÞ inertia matrix
Mt mass of the top
Mi external torque acting on the t̂ti axis
~MMn resultant nonconservative torque applied to rigid body n
~MMf j friction torque at joint j
N number of degrees of freedom
Q vector of nonconservative generalized forces
R number of rigid bodies
S length of a saddle tendon in a symmetrical configuration
S0 rest length of a saddle tendon
V0 rest length of a vertical tendon
X , Y , Z Cartesian inertial coordinates of the mass center of the top
T ðqÞ vector of tensions in the tendons
Tj tension in the jth tendon
TD tension in a diagonal tendon in a symmetrical configuration
TS tension in a saddle tendon in a symmetrical configuration
TV tension in a vertical tendon in a symmetrical configuration
U potential energy
V length of a vertical tendon in a symmetrical configuration
Zi initial height
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Fuller (1975) and Pugh (1976) pioneered tensegrity structures research, but their work was confined to
geometrical investigations. Structural mechanics was later involved as the theoretical framework for the
analysis and design of these structures and research in tensegrity structures turned into a systematic one.
Calladine (1978, 1982), Motro et al. (1986), Hanaor (1988), Pellegrino (1990) made important contributions
toward further knowledge of the statics of these structures. Kebiche et al. (1999) presented interesting
results of numerical nonlinear static analysis of tensegrity structures. Sultan et al. (2001) formulated the
complete prestressability problem––which consists in finding equilibrium configurations with all tensile
elements in tension when no external forces or torque act on the structure––and reported the discovery of
analytical solutions of this problem for several classes of tensegrity structures.

Zf final height
a azimuth of bar A11B11 in a symmetrical configuration
ai initial azimuth
af final azimuth
aij azimuth of bar AijBij
d declination of a bar in a symmetrical configuration
di initial declination
df final declination
dij declination of bar AijBij
w, /, h Euler angles of the top reference frame
s reconfiguration time
~xxn angular velocity of the nth rigid body

Fig. 1. A tensegrity structure.
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Research in tensegrity structures dynamics is less developed than its statics counterpart. Previous in-
vestigations were limited to numerical and experimental analysis of particular tensegrity configurations.
Motro et al. (1986) presented experimental results of linear dynamics for a tensegrity structure composed of
three bars and nine tendons. The experiment was aimed at determining the dynamic characteristics of the
structure by harmonic excitation of a node and measurement of the responses of the other nodes. Furuya
(1992) used finite element programs to analyze the vibrational characteristics of some tensegrity structures
and concluded that the modal frequencies increase as the pretension increases. Oppenheim and Williams
(2001a) proved that, for a tensegrity structure composed of three bars and six tendons and with linear
kinetic damping in the tendons, the rate of decay of vibrations is much slower than might be expected.
However when linear kinetic friction of the angular motion between structural members in contact was
introduced, an exponential rate of decay was obtained. In another article by Oppenheim and Williams
(2001b) these remarks were reinforced, leading to the conclusion that friction in the rotational joints of the
structure is a more important source of damping than the material damping in the tendons. Murakami
(2001) used the Lagrangian and Eulerian approaches to the equations of motion derivation for a large class
of structures and applied them to some tensegrity structures for numerical simulation and modal analysis.

Active control design studies for tensegrity structures have been reported by Skelton and Sultan (1997),
Sultan and Skelton (1997, 1998a, 1998b), Sultan (1999), Sultan et al. (1999, 2000), and Djouadi et al. (1998).
These articles showed that tensegrity structures are excellent candidates for smart structures since the
control systems can be easily embedded in the structures; for example some of the tendons can act as
actuators and some as sensors, providing the basic components of a control system.

Tensegrity structures also aroused the interest of the bio-medical community: they have been proposed
to explain how various types of cells (e.g. nerve cells, smooth muscles, etc.) resist shape distortion (Ingber,
1993, 1998). Results of static numerical analysis using a tensegrity structure to model a cell’s static prop-
erties which were in agreement with biological experimental measurements have been reported (see
Stamenovic et al., 1996; Coughlin and Stamenovic, 1997).

In this article we first present the nonlinear equations of motion for certain tensegrity structures. Next,
for particular tensegrity structures, a class of motions, coined symmetrical motions, is defined and the
conditions under which these motions exist, as well as the corresponding equations of motion, are estab-
lished. These symmetrical motions are then used in tackling the important problem of reconfiguration in
tensegrity structures. Tendon control reconfiguration procedures through symmetrical motions are pro-
posed. The reconfiguration takes place in a finite, prescribed, time. Examples of these reconfiguration
procedures are given.

2. Nonlinear equations of motion

An important advantage of flexible tensegrity structures over classical flexible structures is that their
dynamics can be described accurately enough by ordinary differential equations rather than partial differ-
ential equations. This is so because tensegrity structures flexibility is achieved through special design
techniques which combine elements that can be considered, to a good approximation, massless elastic
members (e.g. tendons) or rigid bodies. Under very general modeling assumptions this results, as we shall
see in the following, in mathematical models composed of finite sets of ordinary differential equations.

As is well known, ordinary differential equations are much easier to deal with numerically as well as
analytically. Moreover, modern control system design theory heavily relies on state space representation of
the system’s dynamics. Ordinary differential equations are readily put in state space form (see Skelton,
1988), whereas for partial differential equations the situation is different; the separation of variables method
is applied in some cases to get an infinite set of ordinary differential equations and a set of partial differ-
ential equations with boundary values. Usually, for control design, only a finite set of ordinary differential
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equations is retained. Thus, qualitative as well as quantitative alteration of the original mathematical model
is performed through this process.

Next we derive a mathematical model of tensegrity structures dynamics which consists of ordinary
differential equations.

Consider a tensegrity structure composed of E elastic and massless tendons and R rigid bodies. We
assume that all constraints on the system are holonomic, scleronomic, and bilateral. The external constraint
forces are workless, which means that they do no work through a virtual displacement consistent with the
geometric constraints. We neglect the forces exerted on the structure by other force fields (for example the
gravitational field).

Let qj, j ¼ 1; . . . ;N , be a set of independent (also called Lagrange) generalized coordinates which describe
the motion of the system with respect to an inertial reference frame and let

q ¼ ½q1 q2 . . . qN �T ð1Þ

be the vector of generalized coordinates. The application of the Lagrangian methodology to derive the
nonlinear equations of motion requires the derivation of the kinetic and potential energies and of the
nonconservative generalized forces.

Since the tendons are massless the kinetic energy is given by the rigid bodies and it is a quadratic form of
the generalized velocities:

K ¼ 1

2
_qqTMðqÞ _qq; ð2Þ

where MðqÞ is the inertia matrix.
The potential energy is due to the E tendons, being given by

U ¼
XE
j¼1

Z Lj

0

Tj dlj: ð3Þ

Here Lj is the elongation of the jth tendon, Tj is its tension (considered positive if the tendon is in tension
and zero otherwise), and the differential element dlj is given by

dlj ¼
XN
n¼1

olj
oqn

dqn; ð4Þ

where lj is the length of the jth tendon. The potential energy becomes

U ¼
XE
j¼1

Z Lj

0

Tj
XN
n¼1

olj
oqn

dqn: ð5Þ

We assume that the system is also acted upon by nonconservative forces and torques. The corresponding
nonconservative generalized forces can be expressed as shown by Skelton (1988):

Qj ¼
XR
n¼1

~FF n � o
_~rr~rrn

o _qqj

 
þ ~MMn � o~xx

n

o _qqj

!
; j ¼ 1; . . . ;N : ð6Þ

Here Qj is the nonconservative generalized force associated with the jth generalized coordinate, ~FF n and ~MMn

are the resultant nonconservative force and torque, respectively, applied to rigid body n, _~rr~rrn and ~xxn are the
velocity of the center of mass and the angular velocity of the nth rigid body, respectively.

For a holonomic system whose configuration is described by N independent generalized coordinates qj,
j ¼ 1; . . . ;N , Lagrange equations are
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d

dt
oL
o _qqj

 !
� oL
oqj

¼ Qj; j ¼ 1; . . . ;N ; ð7Þ

where t is the time and L ¼ K � U is the Lagrangian of the system.
Applied to a tensegrity structure, Lagrange equations yield

MðqÞ€qqþ cðq; _qqÞ þ AðqÞT ðqÞ ¼ Q; ð8Þ

where

• cðq; _qqÞ is a vector of quadratic functions in _qq, whose components can be expressed as

ci ¼
XN
j¼1

XN
n¼1

oMij

oqn

�
� 1

2

oMjn

oqi

�
_qqj _qqn; i ¼ 1; . . . ;N ; ð9Þ

• AðqÞT ðqÞ is the vector of elastic generalized forces where A½n; j� ¼ olj=oqn, n ¼ 1; . . . ;N , j ¼ 1; . . . ;E, and
T ðqÞ is the vector of tensions in the tendons;

• Q ¼ ½Q1 Q2 � � � QN �T is the vector of nonconservative generalized forces.

Eqs. (8), which describes tensegrity structures nonlinear dynamics, represent a finite set of second order
ordinary differential equations.

A particular case of interest is when the nonconservative forces and torques acting on the structure can
be separated in the following two types. The first type is that of linear kinetic friction forces and torques at
the joints of the structure and linear kinetic damping forces in the tendons (a linear kinetic friction force/
torque is proportional to the relative linear/angular velocity between the members in contact, whereas a
linear kinetic damping force is proportional to the time derivative of the tendon’s elongation), and the
second type is that of external––not friction or damping––forces and torques applied to the rigid bodies.
Using Eqs. (6) it is easy to see that in this case the generalized forces are linear in the generalized velocities
and in the external forces and torques, leading to the following equations of motion:

MðqÞ€qqþ cðq; _qqÞ þ AðqÞT ðqÞ þ CðqÞ _qqþ HðqÞF ¼ 0; ð10Þ

where CðqÞ and HðqÞ are matrices of appropriate dimensions whereas F is the vector of external forces and
torques.

3. Two stage SVD tensegrity structures

In the following we shall focus on a certain class of structures, coined two stage SVD tensegrity
structures. These structures present clear practical interest for industrial applications. They have been
previously investigated for control design (Skelton and Sultan, 1997), integrated structure and control
system design (Sultan and Skelton, 1997), sensors design (Sultan and Skelton, 1998a), deployment (Sultan
and Skelton, 1998b), and prestressability (Sultan et al., 2001).

A two stage SVD tensegrity structure is composed of six bars, a rigid top (B12B22B32), a rigid base
(A11A21A31), and 18 tendons, as shown in Fig. 2. A stage contains bars with the same second index; for
example bars A11B11, A21B21, A31B31 determine the first stage. The acronym ‘‘SVD’’ comes from the fol-
lowing notation we introduce for the tendons: tendons Bi1Aj2 will be called saddle tendons, Aj1Bi1 and Aj2Bi2
vertical tendons, and Aj1Ai2 and Bj1Bi2 diagonal tendons respectively.
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The assumptions made for the mathematical modeling of two stage SVD tensegrity structures are: the
tendons are massless, not-damped (not affected by damping), and linear elastic, the tension in tendon j being
given by

Tj ¼ kj
lj � l0j
l0j

; ð11Þ

where kj is the stiffness of the jth tendon (defined here as the product between the cross-section and the
longitudinal modulus of elasticity of the tendon), lj is its length, and l0j is its rest–length. We also assume
that the base and the top are rigid bodies, the bars are rigid, axially symmetric, and for each bar the ro-
tational degree of freedom around the longitudinal axis of symmetry is neglected. We assume that an
external force and an external torque act on the rigid top. Also friction torques, proportional to the relative
angular velocity, act at the six joints between the base or the rigid top with the bars, being given by

~MMf j ¼ dj ~xxa
�

� ~xxb
�
; j ¼ 1; . . . ; 6; ð12Þ

where ~MMf j is the friction torque at joint j, exerted by body ‘‘b’’ on body ‘‘a’’, due to the relative angular
motion between bodies ‘‘a’’ and ‘‘b’’. The scalar dj6 0 is the coefficient of friction at joint j, whereas ~xx	 is
the angular velocity of body *. We neglect the forces exerted on the structure by external force fields (e.g.
gravitational). We remark that these assumptions are particular cases of the modeling assumptions made
for the derivation of the general equations of motion of tensegrity structures. The equations of motion of
two stage SVD tensegrity structures have the form given by Eqs. (10).

We consider that the base is fixed and we introduce the inertial reference frame, b̂b1, b̂b2, b̂b3, as an or-
thonormal dextral set of vectors, whose origin coincides with the geometric center of triangle A11A21A31.
Axis b̂b3 is orthogonal to A11A21A31 pointing upward, while b̂b1 is parallel to A11A31, pointing toward A31. We
introduce another orthonormal dextral reference frame, t̂t1, t̂t2, t̂t3, called the top reference frame. Its origin is
located at the geometric center of triangle B12B22B32, Ot, axis t̂t3 is orthogonal to B12B22B32 pointing upward,

Fig. 2. Two stage SVD tensegrity structure.
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while t̂t1 is parallel to B12B32, pointing toward B32. For simplicity it is assumed that the top reference frame is
central principal for the top rigid body.

The 18 independent generalized coordinates used to describe the motion of this holonomic system, are: w,
/, h, the Euler angles for a 3-1-2 sequence to characterize the inertial orientation of the top reference frame,
X, Y, Z, the inertial Cartesian coordinates of the origin of the top reference frame, dij and aij, the decli-
nation and the azimuth of the longitudinal axis of symmetry of bar AijBij, measured with respect to the
inertial reference frame and defined as follows: dij is the angle made by the vector AijBij

			!
with b̂b3 and aij is the

angle made by the projection of this vector onto plane (b̂b1, b̂b2) with b̂b1 (see Fig. 2). Hence, the vector of
generalized coordinates is

q ¼ ½d11 a11 d21 a21 d31 a31 d12 a12 d22 a22 d32 a32 w / h X Y Z�T : ð13Þ

The nonlinear equations of motion are given by Eqs. (10):

MðqÞ€qqþ cðq; _qqÞ þ AðqÞT ðqÞ þ CðqÞ _qqþ HðqÞF ¼ 0: ð14Þ

Matrices MðqÞ, AðqÞ, CðqÞ, HðqÞ have been derived by Sultan (1999). Here F is the vector of external forces
and torques acting on the rigid top, given by

F ¼ ½M1 M2 M3 F1 F2 F3�T ; ð15Þ

where Mi and Fi, i ¼ 1–3, are the force and torque, respectively, acting on the rigid top along axis t̂ti.

4. Symmetrical motions

We shall now investigate the conditions under which particular motions, described by simpler equations,
are possible. We first assume that the two stage SVD tensegrity structure under investigation has the fol-
lowing properties.

• All bars are identical, of length l and mass m, and the top and base triangles are equal equilateral trian-
gles with sides of length b.

• All saddle tendons are identical (of rest length S0 and stiffness kS); all vertical tendons are identical (of
rest length V0 and stiffness kV); all diagonal tendons are identical (of rest length D0 and stiffness kD).

• The coefficients of friction at the six joints––between the base or the rigid top with the bars––are equal,
dj ¼ d, j ¼ 1; . . . ; 6.

We introduce a particular class of configurations called symmetrical configurations and defined as fol-
lows: all bars have the same declination, d, the vertical projections of points Ai2, Bi1, i ¼ 1–3, onto the base
make a regular hexagon, planes A11A21A31 and A12A22A32 are parallel. These configurations can be pa-
rameterized by three numbers: the azimuth of bar A11B11, called a, the declination, d, and the height of the
structure, Z. The generalized coordinates corresponding to a symmetrical configuration are given by the
following expressions:

w ¼ 300; / ¼ h ¼ 0; X ¼ Y ¼ 0; Z ¼ Z; a11 ¼ a; a21 ¼ a þ 240;

a31 ¼ a þ 120; a12 ¼ a þ 120; a22 ¼ a; a32 ¼ a þ 240; dij ¼ d; i ¼ 1–3; j ¼ 1; 2: ð16Þ

From physical considerations we impose the following restrictions. First a 2 f½0; 360Þ � 30g since for a ¼ 30
some bars––for example A11B11, A21B21, A31B31––intersect. Second 0 < d < 90 because for d ¼ 90 the bars
collide with the base or top and for d ¼ 0 they are perpendicular to the base and top, a situation we do not
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consider here. Lastly the height, Z, should be large enough such that the ends of the bars of the second stage
labeled Ai2, i ¼ 1–3, do not collide with the base, hence Z > l cosðdÞ (because for Z ¼ l cosðdÞ impact occurs).

Top and frontal views of a two stage SVD tensegrity structure with this geometry are given in Fig. 3.
In a symmetrical configuration, the lengths of all of the saddle (S), all of the vertical (V), and all of the

diagonal (D) tendons are the same, given by

S ¼ Z2



þ l2 þ 3l2 cos2ðdÞ � 4lZ cosðdÞ þ b

2

3
� 2ffiffiffi

3
p lb sinðdÞ cosða � 30Þ

�1=2

; ð17Þ

V ¼ fl2 þ b2 � 2lb sinðdÞ sinða þ 30Þg1=2; ð18Þ

Fig. 3. Symmetrical configuration.
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D ¼ l2



þ b
2

3
þ Z2 � 2lZ cosðdÞ � 2ffiffiffi

3
p lb sinðdÞ sinðaÞ

�1=2

; ð19Þ

respectively (see Sultan et al., 2001, for details on the derivation of S, V, D). The corresponding tensions are
all equal; let their values be TS, TV, TD respectively.

The particular class of motions we are interested in and which we shall call symmetrical motions, is
characterized by the fact that throughout the motion the structure yields symmetrical configurations. The
corresponding generalized coordinates have the values given by Eqs. (16).

Substitution of Eqs. (16) into the general equations of motion, Eqs. (14), leads to the following equations
(see Sultan, 1999, for details):

F1 ¼ F2 ¼ M1 ¼ M2 ¼ 0; ð20Þ

d

dt
ð _ZZ sinðdÞÞ ¼ 0; ð21Þ

d

dt
3~JJ sin2ðdÞ _aa

 
þ

ffiffiffi
3

p

2
mlb

d

dt
ðsinðdÞ cosða þ 60ÞÞ

!
¼ M3; ð22Þ

~JJ €dd � d _dd þ AT1 Tr ¼ 0; ð23Þ

~JJ sin2ðdÞ€aa � d _aa þ ~JJ sinð2dÞ _aa _dd þ AT2 Tr ¼ 0; ð24Þ

~mm sinðdÞ€dd þ eMM €ZZ þ ~mm cosðdÞ _dd2 þ AT3Tr ¼ F3; ð25Þ

where

~JJ ¼ J þ ml
2

4
; ~mm ¼ 3ml

2
; eMM ¼ Mt þ 3m: ð26Þ

Here AT1 , A
T
2 , A

T
3 are the rows of the matrix Ar given in Appendix A, Mt is the mass of the rigid top, J is the

transversal moment of inertia of a bar, and Tr ¼ ½TS TV TD�T . Additionally, throughout the motion, the
tendons must be in tension, thus

TS > 0; TV > 0; TD > 0: ð27Þ

We note that a necessary condition for symmetrical motions to exist is that the components of the force
and the torque acting on the rigid top, except those along the t̂t3 axis, must be zero (F1 ¼ F2 ¼ M1 ¼ M2 ¼ 0).

Another necessary condition for these motions to exist is given by Eq. (21) which says that the com-
ponent of the rigid top velocity onto a plane perpendicular to a bar is constant throughout the motion.
Consider now the case when the initial derivative of Z, let it be called _ZZi, is nonzero, implying _ZZi sinðdiÞ 6¼ 0
(since 0 < di < 90). Then, from Eq. (21), we get

_ZZ ¼
_ZZi sinðdiÞ
sinðdÞ ) j _ZZj > j _ZZi sinðdiÞj ð28Þ

which shows that the height of the structure would either continuously increase or continuously decrease
(as t! 1, Z ! �1 or Z ! þ1). Because of physical limitations this is possible only for a limited time
(for example until some members of the structure break). If _ZZi ¼ 0 then from Eq. (21) we get Z ¼ constant
(since sinðdÞ ¼ 0 leads to d ¼ 180 n with n an integer number, which is not an acceptable solution because
0 < d < 90). Thus during such a symmetrical motion the height of the structure remains constant and the
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configuration of the structure changes only through changes in a and d (the attitude of the bars). Hence, the
only rigid bodies in motion are the bars.

We remark that, in general, symmetrical motions are described by five equations, Eqs. (21)–(25), whereas
we have only three independent variables, a, d, Z. This is a consequence of the fact that we imposed certain
constraints, given by Eqs. (16), on the generalized coordinates. Because of this we cannot arbitrarily specify
the initial conditions (namely the values and first order time derivatives of a, d, and Z at the initial time) and
the controls time histories (the external force, F3, torque, M3, and the tendons rest lengths, S0, V0, D0). For
example assume that we specify the initial conditions and the tendons rest-lengths time histories. Then, by
the theorem of the existence and uniqueness solution of the initial conditions problem for ordinary dif-
ferential equations, Eqs. (23)–(25) yield a unique solution for a, d, and Z. Thus M3 cannot be arbitrarily
specified but has to satisfy Eq. (22). Moreover, this solution might violate condition (21). This discussion
reveals an important problem for these motions, which consists in finding the initial conditions and the
controls which result in symmetrical motions. In this article we shall address the most interesting problem
(from a practical perspective) namely that of equilibrium initial conditions, when all the time derivatives are
zero initially. This results in a very useful application of symmetrical motions called symmetrical recon-
figuration.

4.1. Symmetrical equilibrium configurations

Symmetrical equilibrium configurations are characterized by Eqs. (20)–(25) in which all time derivatives
are zero, thus

F1 ¼ F2 ¼ M1 ¼ M2 ¼ M3 ¼ 0; ð29Þ
and

ArTr ¼ ½0 0 F3�T ; TS > 0; TV > 0; TD > 0: ð30Þ
If F3 ¼ 0 then the corresponding symmetrical equilibrium configurations are actually symmetrical pres-
tressable configurations for which all saddle, vertical, and diagonal tendons tensions are respectively equal
(see Sultan et al., 2001, for analytical solutions of conditions (30) in this case).

If F3 6¼ 0 then we can easily prove that, because a, d, and Z must satisfy a 2 f½0; 360Þ � 30g, 0 < d < 90,
and Z > l cosðdÞ, there are no solutions of ArTr ¼ ½0 0 F3�T for which detðArÞ ¼ 0. Indeed, such a solution
occurs if the first two rows of Ar are linearly dependent, a condition which, after simple algebraic ma-
nipulations, leads to Z ¼ l cosðdÞ which contradicts the condition Z > l cosðdÞ (for Z ¼ l cosðdÞ the ends of
the second stage bars labeled Ai2, i ¼ 1–3, collide with the base and the ends of the first stage labeled Bi1,
i ¼ 1–3, collide with the top).

Hence Ar is nonsingular at a solution for which F3 6¼ 0 and ArTr ¼ ½0 0 F3�T can be easily solved for the
tensions yielding

Tr ¼ A�1
r ½0 0 F3�T : ð31Þ

5. Symmetrical reconfiguration

Consider now the following scenario: the structure is in a symmetrical equilibrium configuration char-
acterized by ai, di, and Zi. We want to change this initial configuration to another symmetrical equilibrium
configuration, characterized by af , df , and Zf through a symmetrical motion. Because the structure is in
equilibrium initially, the symmetrical motion can take place only at constant height, thus Zi ¼ Zf ¼ Z. We
call this process symmetrical reconfiguration. It can be used for packing the structure for transport or for
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modifying its mechanical properties (e.g. stiffness or dynamical characteristics) by changing its geometry.
For example we can imagine an application in which a two stage SVD tensegrity structure is required to
support a constant vertical load at a given height. Operating conditions require modification of the me-
chanical characteristics or of the internal geometry (bars attitude) of the structure without unloading it or
changing its height. This can be done through a symmetrical reconfiguration.

If a and d are prescribed as functions of time then we can solve for the necessary controls required to
enforce a symmetrical reconfiguration, using Eqs. (22)–(25). For example we consider that the external
force F3 (which in this scenario is the load under which the structure operates) is given. Under the as-
sumption that Ar ¼ ½A1 A2 A3�T (which is a function of a and d) is nonsingular we get

Tr ¼ �A�1
r e; ð32Þ

M3 ¼
d

dt
3~JJ sin2ðdÞ _aa

 
þ

ffiffiffi
3

p

2
mlb

d

dt
sinðdÞ cosðað þ 60ÞÞ

!
; ð33Þ

where

e ¼
~JJ €dd � d _dd

~JJ sin2ðdÞ€aa � d _aa þ ~JJ sinð2dÞ _aa _dd
~mm sinðdÞ€dd þ ~mm cosðdÞ _dd2 � F3

264
375: ð34Þ

In addition the tensions should be positive: TS > 0, TV > 0, TD > 0. We can see that, in this scenario, tendon
control (that is control of the tendons tensions, Tr) and external torque control (M3 6¼ 0) are required.

Tendon control requires modification of the active lengths of the tendons. This task can be accomplished
by motors attached, for example, at the end of the bars (or, if the bars are hollow, inside them). We consider
that these motors work in the following way. For example the motor pulls a tendon and rolls it over a small
wheel in such a way that its active length is shortened: the part of the tendon which is rolled over the motor
wheel no longer contributes to the tendon tension. Hence this control procedure works as if the rest–length
of the tendon would be shortened. Similarly, when the motor reverses the sense of rotation, a portion of the
inactive tendon becomes active, carrying force; hence the rest–length of the tendon increases. We call this
procedure of tendon control, rest-length control.

Taking into account the relations between the rest–lengths and the tensions under the assumption that
the tendons are linear elastic, we can solve for the necessary rest–lengths which enforce the motion:

S0 ¼
kSS

TS þ kS
; V0 ¼

kVV
TV þ kV

; D0 ¼
kDD

TD þ kD
; ð35Þ

where TS ¼ Tr1, TV ¼ Tr2, TD ¼ Tr3 and S, V, D are given by Eqs. (17)–(19).
We shall further determine the necessary characteristics of a and d as functions of time connecting the

initial and final configurations, (ai; di; Zi) and (af ; df ; Zf ) (where Zi ¼ Zf ), respectively. In the following we
shall refer to these functions as aðtÞ and dðtÞ respectively.

• First, we want the transition between the two symmetrical equilibrium configurations to take place in a
prescribed finite time, s.

• Second, since the terminal points are equilibrium configurations, a and d must be constant before and
after the transition, which is assumed to take place for t 2 ½0; s�. Thus:

aðtÞ ¼ ai if t6 0
af if tP s



; dðtÞ ¼ di if t6 0

df if tP s:



ð36Þ
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• Third, practical considerations force us to consider only continuous time controls. Consequently the vec-
tor of tendons tensions, Tr, must be continuous in time. Hence, eðtÞ ¼ ArTr must be continuous in time,
and thus aðtÞ and dðtÞ must be functions of (at least) class C2ðRÞ. Thus, _aa, €aa, _dd, and €dd should have zero
values at the terminal points of the transition:

_aað0Þ ¼ €aað0Þ ¼ _ddð0Þ ¼ €ddð0Þ ¼ _aaðsÞ ¼ €aaðsÞ ¼ _ddðsÞ ¼ €ddðsÞ ¼ 0: ð37Þ
The simplest piecewise polynomials which satisfy the above conditions are:

aðtÞ ¼
ai if t6 0
at if 0 < t < s
af if tP s

8<: ; ð38Þ

where

at ¼ ai þ
30

s5
ðaf � aiÞ

t5

30

�
� t

4

6
ðt � sÞ þ t

3

3
ðt � sÞ2

�
; ð39Þ

dðtÞ ¼
di if t6 0
dt if 0 < t < s
df if tP s

8<: ; ð40Þ

where

dt ¼ di þ
30

s5
dfð � diÞ

t5

30

�
� t

4

6
ðt � sÞ þ t

3

3
ðt � sÞ2

�
: ð41Þ

The set of functions which satisfy the above conditions is very rich and other examples can be easily
constructed. For example we can multiply at and/or dt by ð1þ t2ðt � sÞ2Þn where n is a natural number, or
by any other function gðtÞ of class C2ð½0; s�Þ such that gð0Þ ¼ gðsÞ ¼ 1 and _ggð0Þ ¼ €ggð0Þ ¼ _ggðsÞ ¼ €ggðsÞ ¼ 0
and the resulting aðtÞ and/or dðtÞ will satisfy the required conditions.

Lastly, the condition that Ar is nonsingular deserves some discussion. The corresponding condition, det
ðArÞ 6¼ 0, reduces to

Z2u� Z 3lu
�

þ bffiffiffi
3

p
�
cosðdÞ þ 3lu

 
þ

ffiffiffi
3

p

2
b

!
l cos2ðdÞ 6¼ 0; ð42Þ

where u ¼ sinðdÞ cosða þ 30Þ (see Sultan et al., 2001, for details). The functions aðtÞ and dðtÞ must satisfy
this condition. Once aðtÞ and dðtÞ have been chosen one easy way to verify if condition (42) is satisfied is
through discretization by gridding the time interval ½0; s� and checking condition (42) at the nodes of the
grid. We also remark that condition (42), being linear in cosða þ 30Þ, can be easily solved for a, providing
another simple way to check if detðArÞ 6¼ 0.

5.1. Example

Consider a two stage tensegrity structure characterized by the following parameters:

l ¼ 1 m; b ¼ 0:67 m; J ¼ 1 kgm2; m ¼ 1 kg; Mt ¼ 1 kg; d ¼ �1;

kS ¼ kV ¼ kD ¼ 1000 N: ð43Þ

The structure is acted upon by a constant force F3 ¼ �50 N. The corresponding equilibrium symmetrical
configurations are characterized by conditions (30).
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Solutions of conditions (30) can be found as follows. First we choose a, d, and Z such that detðArÞ 6¼ 0
(that is a, d, and Z verify condition (42) and a 2 f½0; 360Þ � 30g; 0 < d < 90; Z > l cosðdÞ) and we com-
pute the tensions using Eq. (31). If these are positive, then a feasible solution of the problem has been
found, otherwise we have to modify a, d, or Z.

We next consider the following two feasible solutions:

ai ¼ 55�; di ¼ 40�; Zi ¼ 1:11 m; Tri ¼ ½26:11 1:85 18:38�T N; ð44Þ

and

af ¼ 65�; df ¼ 35�; Zf ¼ Zi ¼ 1:11 m; Trf ¼ ½46:97 12:27 43�T N: ð45Þ

The structure can evolve through a symmetrical motion from the initial configuration, characterized by
ðai; di; ZiÞ, to the final configuration, characterized by ðaf ; df ; ZfÞ. For example, for s ¼ 5 s, the corre-
sponding aðtÞ and dðtÞ given by Eqs. (38)–(41), are plotted in Fig. 4. The necessary rest–lengths which

Fig. 5. Rest-lengths time histories for symmetrical reconfiguration.

Fig. 4. a and d time histories for symmetrical reconfiguration.
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guarantee this trajectory are given by Eqs. (35) and are plotted in Fig. 5. The corresponding tensions time
histories, given by Eq. (32) and plotted in Fig. 6, show that throughout the motion all tendons are in
tension. The external torque time history, M3, given by Eq. (33) and plotted in Fig. 7, shows that a control
torque is required to perform this symmetrical reconfiguration.

6. Symmetrical reconfiguration with zero control torque

A natural question we ask is if symmetrical reconfigurations in which external torque is not necessary
(that is M3 ¼ 0), are possible. In order to answer this question we consider Eq. (22) which, for M3 ¼ 0,
reduces to

Fig. 6. Tendons tensions time histories for symmetrical reconfiguration.

Fig. 7. Control torque time history for symmetrical reconfiguration.
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3 ~JJ sin2ðdÞ _aa þ ~mmbffiffiffi
3

p d

dt
ðsinðdÞ cosða þ 60ÞÞ ¼ C1; ð46Þ

where C1 is a constant. Since the structure is in equilibrium initially, _aai ¼ _ddi ¼ _ZZi ¼ 0, thus C1 ¼ 0, and
Eq. (46) can be integrated after multiplication with the integrable factor

l ¼ 1

sin2ðdÞ cos2ða þ 60Þ
: ð47Þ

After several algebraic manipulations we obtain from Eq. (46)

3 ~JJ sinða � aiÞ sinðdÞ sinðdiÞ þ
~mmbffiffiffi
3

p ðsinðdÞ cosða þ 60Þ � sinðdiÞ cosðai þ 60ÞÞ ¼ 0: ð48Þ

Hence the structure can be symmetrically reconfigured such that M3 ¼ 0 if the successive symmetrical
configurations the structure passes through during the motion satisfy Eq. (48). Because of this constraint,
aðtÞ and dðtÞ cannot be arbitrarily specified: if one function is specified, then the other is given by Eq. (48).
The relations between the time derivatives of aðtÞ and dðtÞ can be determined by implicit differentiation of
Eq. (48). By writing Eq. (48) as f ða; dÞ ¼ 0 where

f ða; dÞ ¼ 3 ~JJ sinða � aiÞ sinðdÞ sinðdiÞ þ
~mmbffiffiffi
3

p ðsinðdÞ cosða þ 60Þ � sinðdiÞ cosðai þ 60ÞÞ; ð49Þ

and differentiating f ða; dÞ ¼ 0 with respect to time we get:

fd _dd þ fa _aa ¼ 0; ð50Þ

fd €dd þ fa€aa þ faa _aa
2 þ 2fad _aa _dd þ fdd

_dd2 ¼ 0: ð51Þ
Here fa, fd, are the first order derivatives of f ða; dÞ with respect to a and d and fad, faa, fdd are the second
order derivatives of f ða; dÞ with respect to a and d.

For example consider that we specify the function aðtÞ. Then the corresponding dðtÞ, which guarantees
that M3 ¼ 0, is determined by solving Eq. (48) for dðtÞ. Of course there is no guarantee that the corre-
sponding dðtÞ would be of the same class as aðtÞ. However, the implicit function theorem guarantees that if
fd 6¼ 0 this is locally true.

6.1. Example

As an example of a symmetrical reconfiguration with zero external torque we consider the
same tensegrity structure as before. Consider that a constant force F3 ¼ 50 N acts on the rigid top and
that the initial symmetrical equilibrium configuration, at which all tendons are in tension, is characterized
by

ai ¼ 70�; di ¼ 30�; Zi ¼ 1:6 m; Tri ¼ ½0:49 8:91 8:79�T N: ð52Þ
We want to change this configuration to another symmetrical equilibrium configuration characterized by
af ¼ 65� through a symmetrical reconfiguration with zero external torque. In this case af and df must obey
Eq. (48) in which a is replaced by af and d is replaced by df . Solving the resulting equation for df we get
df ¼ 22:03�. At this point we have to check if in the final configuration characterized by

af ¼ 65�; df ¼ 22:03�; Zf ¼ Zi ¼ 1:6 m ð53Þ
all tendons are in tension. For this purpose we compute the tensions using Eq. (31) and ascertain that
Trf ¼ ½3:58 4:93 11:29�T N, showing that, indeed, all tendons are in tension.
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We shall consider that aðtÞ is given by Eqs. (38) and (39) and the corresponding dðtÞ, which guarantees
that M3 ¼ 0, is determined from Eq. (48) (see Fig. 8). The control rest–lengths and tensions required to
assure the symmetrical reconfiguration with zero external torque are given in Figs. 9 and 10. We remark
that the tendons are always in tension throughout the motion.

Finally we compare this reconfiguration, in which no control torque is required, with the symmetrical
reconfiguration in which dðtÞ is no longer given by the condition that M3 ¼ 0 but it is given by Eqs. (40) and
(41). The initial and final configurations are the same as before. Fig. 11 shows the control torque,M3, which
has to be applied to the rigid top. We can see that, though of small magnitude, a control torque is necessary
in this case.

Fig. 8. a and d time histories for symmetrical reconfiguration with zero control torque.

Fig. 9. Rest-lengths time histories for symmetrical reconfiguration with zero control torque.
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7. Conclusions

Under very general modeling assumptions the nonlinear equations of motion for tensegrity structures
can be derived using Lagrange methodology. This yields a finite set of second order ordinary differential
equations. For particular motions of some tensegrity structures, coined symmetrical motions, these
equations reduce to a small set. Symmetrical motions can be used for symmetrical reconfigurations of
tensegrity structures. An interesting situation in which symmetrical reconfigurations are very useful is when
the structure is required to maintain a constant height under a given external force. Tendon control and
torque control might be both necessary for this purpose. Through the reconfiguration process the shape as
well as the mechanical properties of a tensegrity structure can be modified. The condition under which no
control torque is required for symmetrical reconfigurations is derived in the form of an algebraic equation.
Numerical examples presented in the article confirm the feasibility of symmetrical reconfigurations.

Fig. 10. Tendons tensions time histories for symmetrical reconfiguration with zero control torque.

Fig. 11. Control torque time history for symmetrical reconfiguration with a and d specified.
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Appendix A

Matrix Ar is a 3� 3 matrix whose elements are given by:

Ar11 ¼
ffiffiffi
3

p
ð2Z � 3lcðdÞÞlsðdÞ � lbcðdÞcða � 30Þffiffiffi

3
p
S

; ðA:1Þ

Ar12 ¼ � lbcðdÞsða þ 30Þ
V

; ðA:2Þ

Ar13 ¼
ffiffiffi
3

p
lZsðdÞ � lbcðdÞsðaÞffiffiffi

3
p
D

; ðA:3Þ

Ar21 ¼
lbsðdÞsða � 30Þffiffiffi

3
p
S

; ðA:4Þ

Ar22 ¼ � lbsðdÞcða þ 30Þ
V

; ðA:5Þ

Ar23 ¼ � lbsðdÞcðaÞffiffiffi
3

p
D

; ðA:6Þ

Ar31 ¼
6Z � 12lcðdÞ

S
; ðA:7Þ

Ar32 ¼ 0; ðA:8Þ

Ar33 ¼
6Z � 6lcðdÞ

D
; ðA:9Þ

where cð	Þ ¼ cosð	Þ, sð	Þ ¼ sinð	Þ.
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